Rotation and Gray-Scale Transform-Invariant Texture Classification Using Spiral Resampling, Subband - Image Processing, IEEE Transactions on
نویسنده
چکیده
This paper proposes a new texture classification algorithm that is invariant to rotation and gray-scale transformation. First, we convert two-dimensional (2-D) texture images to onedimensional (1-D) signals by spiral resampling. Then, we use a quadrature mirror filter (QMF) bank to decompose sampled signals into subbands. In each band, we take high-order autocorrelation functions as features. Features in different bands, which form a vector sequence, are then modeled as a hidden Markov model (HMM). During classification, the unknown texture is matched against all the models and the best match is taken as the classification result. Simulations showed that the highest correct classification rate for 16 kinds of texture was 95.14%.
منابع مشابه
Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model
This paper proposes a new texture classification algorithm that is invariant to rotation and gray-scale transformation. First, we convert two-dimensional (2-D) texture images to one-dimensional (1-D) signals by spiral resampling. Then, we use a quadrature mirror filter (QMF) bank to decompose sampled signals into subbands. In each band, we take high-order autocorrelation functions as features. ...
متن کاملLog-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification
Classification of texture images, especially those with different orientation and scale changes, is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation and scale invariant texture classification using log-polar wavelet signatures. The rotation and scale invariant feature extraction for a given image involves applying a l...
متن کاملRotation-invariant texture classification using a complete space-frequency model
A method of rotation-invariant texture classification based on a complete space-frequency model is introduced. A polar, analytic form of a two-dimensional (2-D) Gabor wavelet is developed, and a multiresolution family of these wavelets is used to compute information-conserving microfeatures. From these microfeatures a micromodel, which characterizes spatially localized amplitude, frequency, and...
متن کاملMultiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns
This paper presents a theoretically very simple yet efficient multiresolution approach to gray scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns termed ‘uniform’ are fundamental properties of local image texture, and their...
متن کاملA Review on Image Texture Analysis Methods
Texture classification is an active topic in image processing which plays an important role in many applications such as image retrieval, inspection systems, face recognition, medical image processing, etc. There are many approaches extracting texture features in gray-level images such as local binary patterns, gray level co-occurence matrixes, statistical features, skeleton, scale invariant fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004